| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bimsc1 | GIF version | ||
| Description: Removal of conjunct from one side of an equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bimsc1 | ⊢ (((𝜑 → 𝜓) ∧ (𝜒 ↔ (𝜓 ∧ 𝜑))) → (𝜒 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 108 | . . . 4 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
| 2 | ancr 314 | . . . 4 ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜓 ∧ 𝜑))) | |
| 3 | 1, 2 | impbid2 141 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜓 ∧ 𝜑) ↔ 𝜑)) |
| 4 | 3 | bibi2d 230 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜒 ↔ (𝜓 ∧ 𝜑)) ↔ (𝜒 ↔ 𝜑))) |
| 5 | 4 | biimpa 290 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 ↔ (𝜓 ∧ 𝜑))) → (𝜒 ↔ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: bm1.3ii 3899 bdbm1.3ii 10682 |
| Copyright terms: Public domain | W3C validator |