| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biorfi | GIF version | ||
| Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) |
| Ref | Expression |
|---|---|
| biorfi.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| biorfi | ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biorfi.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | orc 665 | . . 3 ⊢ (𝜓 → (𝜓 ∨ 𝜑)) | |
| 3 | orel2 677 | . . 3 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) | |
| 4 | 2, 3 | impbid2 141 | . 2 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜓 ∨ 𝜑))) |
| 5 | 1, 4 | ax-mp 7 | 1 ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 103 ∨ wo 661 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in2 577 ax-io 662 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: pm4.43 890 dn1dc 901 excxor 1309 un0 3278 opthprc 4409 frec0g 6006 dcdc 10572 |
| Copyright terms: Public domain | W3C validator |