| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con1biidc | GIF version | ||
| Description: A contraposition inference. (Contributed by Jim Kingdon, 15-Mar-2018.) |
| Ref | Expression |
|---|---|
| con1biidc.1 | ⊢ (DECID 𝜑 → (¬ 𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| con1biidc | ⊢ (DECID 𝜑 → (¬ 𝜓 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotbdc 799 | . . 3 ⊢ (DECID 𝜑 → (𝜑 ↔ ¬ ¬ 𝜑)) | |
| 2 | con1biidc.1 | . . . 4 ⊢ (DECID 𝜑 → (¬ 𝜑 ↔ 𝜓)) | |
| 3 | 2 | notbid 624 | . . 3 ⊢ (DECID 𝜑 → (¬ ¬ 𝜑 ↔ ¬ 𝜓)) |
| 4 | 1, 3 | bitrd 186 | . 2 ⊢ (DECID 𝜑 → (𝜑 ↔ ¬ 𝜓)) |
| 5 | 4 | bicomd 139 | 1 ⊢ (DECID 𝜑 → (¬ 𝜓 ↔ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 DECID wdc 775 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 |
| This theorem depends on definitions: df-bi 115 df-dc 776 |
| This theorem is referenced by: con2biidc 806 necon1abiidc 2305 necon1bbiidc 2306 |
| Copyright terms: Public domain | W3C validator |