ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-abs GIF version

Definition df-abs 9885
Description: Define the function for the absolute value (modulus) of a complex number. (Contributed by NM, 27-Jul-1999.)
Assertion
Ref Expression
df-abs abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))

Detailed syntax breakdown of Definition df-abs
StepHypRef Expression
1 cabs 9883 . 2 class abs
2 vx . . 3 setvar 𝑥
3 cc 6979 . . 3 class
42cv 1283 . . . . 5 class 𝑥
5 ccj 9726 . . . . . 6 class
64, 5cfv 4922 . . . . 5 class (∗‘𝑥)
7 cmul 6986 . . . . 5 class ·
84, 6, 7co 5532 . . . 4 class (𝑥 · (∗‘𝑥))
9 csqrt 9882 . . . 4 class
108, 9cfv 4922 . . 3 class (√‘(𝑥 · (∗‘𝑥)))
112, 3, 10cmpt 3839 . 2 class (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
121, 11wceq 1284 1 wff abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
Colors of variables: wff set class
This definition is referenced by:  absval  9887  absf  9996
  Copyright terms: Public domain W3C validator