ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-en GIF version

Definition df-en 6245
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6251. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Distinct variable group:   𝑥,𝑦,𝑓

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 6242 . 2 class
2 vx . . . . . 6 setvar 𝑥
32cv 1283 . . . . 5 class 𝑥
4 vy . . . . . 6 setvar 𝑦
54cv 1283 . . . . 5 class 𝑦
6 vf . . . . . 6 setvar 𝑓
76cv 1283 . . . . 5 class 𝑓
83, 5, 7wf1o 4921 . . . 4 wff 𝑓:𝑥1-1-onto𝑦
98, 6wex 1421 . . 3 wff 𝑓 𝑓:𝑥1-1-onto𝑦
109, 2, 4copab 3838 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
111, 10wceq 1284 1 wff ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
Colors of variables: wff set class
This definition is referenced by:  relen  6248  bren  6251  enssdom  6265
  Copyright terms: Public domain W3C validator