![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-en | GIF version |
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define ≈ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6251. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
df-en | ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cen 6242 | . 2 class ≈ | |
2 | vx | . . . . . 6 setvar 𝑥 | |
3 | 2 | cv 1283 | . . . . 5 class 𝑥 |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 4 | cv 1283 | . . . . 5 class 𝑦 |
6 | vf | . . . . . 6 setvar 𝑓 | |
7 | 6 | cv 1283 | . . . . 5 class 𝑓 |
8 | 3, 5, 7 | wf1o 4921 | . . . 4 wff 𝑓:𝑥–1-1-onto→𝑦 |
9 | 8, 6 | wex 1421 | . . 3 wff ∃𝑓 𝑓:𝑥–1-1-onto→𝑦 |
10 | 9, 2, 4 | copab 3838 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
11 | 1, 10 | wceq 1284 | 1 wff ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
Colors of variables: wff set class |
This definition is referenced by: relen 6248 bren 6251 enssdom 6265 |
Copyright terms: Public domain | W3C validator |