| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-iom | GIF version | ||
| Description: Define the class of
natural numbers as the smallest inductive set, which
is valid provided we assume the Axiom of Infinity. Definition 6.3 of
[Eisenberg] p. 82.
Note: the natural numbers ω are a subset of the ordinal numbers df-on 4123. Later, when we define complex numbers, we will be able to also define a subset of the complex numbers with analogous properties and operations, but they will be different sets. (Contributed by NM, 6-Aug-1994.) Use its alias dfom3 4333 instead for naming consistency with set.mm. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-iom | ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com 4331 | . 2 class ω | |
| 2 | c0 3251 | . . . . . 6 class ∅ | |
| 3 | vx | . . . . . . 7 setvar 𝑥 | |
| 4 | 3 | cv 1283 | . . . . . 6 class 𝑥 |
| 5 | 2, 4 | wcel 1433 | . . . . 5 wff ∅ ∈ 𝑥 |
| 6 | vy | . . . . . . . . 9 setvar 𝑦 | |
| 7 | 6 | cv 1283 | . . . . . . . 8 class 𝑦 |
| 8 | 7 | csuc 4120 | . . . . . . 7 class suc 𝑦 |
| 9 | 8, 4 | wcel 1433 | . . . . . 6 wff suc 𝑦 ∈ 𝑥 |
| 10 | 9, 6, 4 | wral 2348 | . . . . 5 wff ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 |
| 11 | 5, 10 | wa 102 | . . . 4 wff (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) |
| 12 | 11, 3 | cab 2067 | . . 3 class {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
| 13 | 12 | cint 3636 | . 2 class ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
| 14 | 1, 13 | wceq 1284 | 1 wff ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
| Colors of variables: wff set class |
| This definition is referenced by: dfom3 4333 |
| Copyright terms: Public domain | W3C validator |