| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-oexpi | GIF version | ||
| Description: Define the ordinal
exponentiation operation.
This definition is similar to a conventional definition of exponentiation except that it defines ∅ ↑𝑜 𝐴 to be 1𝑜 for all 𝐴 ∈ On, in order to avoid having different cases for whether the base is ∅ or not. (Contributed by Mario Carneiro, 4-Jul-2019.) |
| Ref | Expression |
|---|---|
| df-oexpi | ⊢ ↑𝑜 = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coei 6023 | . 2 class ↑𝑜 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | con0 4118 | . . 3 class On | |
| 5 | 3 | cv 1283 | . . . 4 class 𝑦 |
| 6 | vz | . . . . . 6 setvar 𝑧 | |
| 7 | cvv 2601 | . . . . . 6 class V | |
| 8 | 6 | cv 1283 | . . . . . . 7 class 𝑧 |
| 9 | 2 | cv 1283 | . . . . . . 7 class 𝑥 |
| 10 | comu 6022 | . . . . . . 7 class ·𝑜 | |
| 11 | 8, 9, 10 | co 5532 | . . . . . 6 class (𝑧 ·𝑜 𝑥) |
| 12 | 6, 7, 11 | cmpt 3839 | . . . . 5 class (𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)) |
| 13 | c1o 6017 | . . . . 5 class 1𝑜 | |
| 14 | 12, 13 | crdg 5979 | . . . 4 class rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜) |
| 15 | 5, 14 | cfv 4922 | . . 3 class (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦) |
| 16 | 2, 3, 4, 4, 15 | cmpt2 5534 | . 2 class (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦)) |
| 17 | 1, 16 | wceq 1284 | 1 wff ↑𝑜 = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦)) |
| Colors of variables: wff set class |
| This definition is referenced by: fnoei 6055 oeiexg 6056 oeiv 6059 |
| Copyright terms: Public domain | W3C validator |