| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hb3an | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, it is not free in (𝜑 ∧ 𝜓 ∧ 𝜒). (Contributed by NM, 14-Sep-2003.) |
| Ref | Expression |
|---|---|
| hb.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| hb.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
| hb.3 | ⊢ (𝜒 → ∀𝑥𝜒) |
| Ref | Expression |
|---|---|
| hb3an | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 921 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | hb.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | hb.2 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 4 | 2, 3 | hban 1479 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
| 5 | hb.3 | . . 3 ⊢ (𝜒 → ∀𝑥𝜒) | |
| 6 | 4, 5 | hban 1479 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → ∀𝑥((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| 7 | 1, 6 | hbxfrbi 1401 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 919 ∀wal 1282 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 |
| This theorem depends on definitions: df-bi 115 df-3an 921 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |