| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jadc | GIF version | ||
| Description: Inference forming an implication from the antecedents of two premises, where a decidable antecedent is negated. (Contributed by Jim Kingdon, 25-Mar-2018.) |
| Ref | Expression |
|---|---|
| jadc.1 | ⊢ (DECID 𝜑 → (¬ 𝜑 → 𝜒)) |
| jadc.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| jadc | ⊢ (DECID 𝜑 → ((𝜑 → 𝜓) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jadc.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | imim2i 12 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| 3 | jadc.1 | . . 3 ⊢ (DECID 𝜑 → (¬ 𝜑 → 𝜒)) | |
| 4 | pm2.6dc 792 | . . 3 ⊢ (DECID 𝜑 → ((¬ 𝜑 → 𝜒) → ((𝜑 → 𝜒) → 𝜒))) | |
| 5 | 3, 4 | mpd 13 | . 2 ⊢ (DECID 𝜑 → ((𝜑 → 𝜒) → 𝜒)) |
| 6 | 2, 5 | syl5 32 | 1 ⊢ (DECID 𝜑 → ((𝜑 → 𝜓) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 DECID wdc 775 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
| This theorem depends on definitions: df-bi 115 df-dc 776 |
| This theorem is referenced by: pm5.71dc 902 |
| Copyright terms: Public domain | W3C validator |