| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jctird | GIF version | ||
| Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctird.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | 2 | a1d 22 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | jcad 301 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 106 |
| This theorem is referenced by: anc2ri 323 ordunisuc2r 4258 fnun 5025 fco 5076 cauappcvgprlemladdru 6846 cauappcvgprlemladdrl 6847 caucvgprlemnkj 6856 dvdsdivcl 10250 |
| Copyright terms: Public domain | W3C validator |