Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nndc GIF version

Theorem nndc 10571
Description: Double negation of decidability of a formula. Intuitionistic logic refutes undecidability (but, of course, does not prove decidability) of any formula. (Contributed by BJ, 9-Oct-2019.)
Assertion
Ref Expression
nndc ¬ ¬ DECID 𝜑

Proof of Theorem nndc
StepHypRef Expression
1 nnexmid 10570 . 2 ¬ ¬ (𝜑 ∨ ¬ 𝜑)
2 df-dc 776 . . 3 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
32notbii 626 . 2 DECID 𝜑 ↔ ¬ (𝜑 ∨ ¬ 𝜑))
41, 3mtbir 628 1 ¬ ¬ DECID 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wo 661  DECID wdc 775
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662
This theorem depends on definitions:  df-bi 115  df-dc 776
This theorem is referenced by:  dcdc  10572
  Copyright terms: Public domain W3C validator