| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notnotnot | GIF version | ||
| Description: Triple negation. (Contributed by Jim Kingdon, 28-Jul-2018.) |
| Ref | Expression |
|---|---|
| notnotnot | ⊢ (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 591 | . . 3 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
| 2 | 1 | con3i 594 | . 2 ⊢ (¬ ¬ ¬ 𝜑 → ¬ 𝜑) |
| 3 | notnot 591 | . 2 ⊢ (¬ 𝜑 → ¬ ¬ ¬ 𝜑) | |
| 4 | 2, 3 | impbii 124 | 1 ⊢ (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: stabnot 774 testbitestn 856 |
| Copyright terms: Public domain | W3C validator |