| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orddi | GIF version | ||
| Description: Double distributive law for disjunction. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| orddi | ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)) ↔ (((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜃)) ∧ ((𝜓 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordir 763 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∨ (𝜒 ∧ 𝜃)) ∧ (𝜓 ∨ (𝜒 ∧ 𝜃)))) | |
| 2 | ordi 762 | . . 3 ⊢ ((𝜑 ∨ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜃))) | |
| 3 | ordi 762 | . . 3 ⊢ ((𝜓 ∨ (𝜒 ∧ 𝜃)) ↔ ((𝜓 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃))) | |
| 4 | 2, 3 | anbi12i 447 | . 2 ⊢ (((𝜑 ∨ (𝜒 ∧ 𝜃)) ∧ (𝜓 ∨ (𝜒 ∧ 𝜃))) ↔ (((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜃)) ∧ ((𝜓 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)))) |
| 5 | 1, 4 | bitri 182 | 1 ⊢ (((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ 𝜃)) ↔ (((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜃)) ∧ ((𝜓 ∨ 𝜒) ∧ (𝜓 ∨ 𝜃)))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 ↔ wb 103 ∨ wo 661 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: prneimg 3566 |
| Copyright terms: Public domain | W3C validator |