ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peircedc GIF version

Theorem peircedc 853
Description: Peirce's theorem for a decidable proposition. This odd-looking theorem can be seen as an alternative to exmiddc 777, condc 782, or notnotrdc 784 in the sense of expressing the "difference" between an intuitionistic system of propositional calculus and a classical system. In intuitionistic logic, it only holds for decidable propositions. (Contributed by Jim Kingdon, 3-Jul-2018.)
Assertion
Ref Expression
peircedc (DECID 𝜑 → (((𝜑𝜓) → 𝜑) → 𝜑))

Proof of Theorem peircedc
StepHypRef Expression
1 df-dc 776 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 ax-1 5 . . 3 (𝜑 → (((𝜑𝜓) → 𝜑) → 𝜑))
3 pm2.21 579 . . . . 5 𝜑 → (𝜑𝜓))
43imim1i 59 . . . 4 (((𝜑𝜓) → 𝜑) → (¬ 𝜑𝜑))
54com12 30 . . 3 𝜑 → (((𝜑𝜓) → 𝜑) → 𝜑))
62, 5jaoi 668 . 2 ((𝜑 ∨ ¬ 𝜑) → (((𝜑𝜓) → 𝜑) → 𝜑))
71, 6sylbi 119 1 (DECID 𝜑 → (((𝜑𝜓) → 𝜑) → 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 661  DECID wdc 775
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in2 577  ax-io 662
This theorem depends on definitions:  df-bi 115  df-dc 776
This theorem is referenced by:  looinvdc  854  exmoeudc  2004
  Copyright terms: Public domain W3C validator