![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peircedc | GIF version |
Description: Peirce's theorem for a decidable proposition. This odd-looking theorem can be seen as an alternative to exmiddc 777, condc 782, or notnotrdc 784 in the sense of expressing the "difference" between an intuitionistic system of propositional calculus and a classical system. In intuitionistic logic, it only holds for decidable propositions. (Contributed by Jim Kingdon, 3-Jul-2018.) |
Ref | Expression |
---|---|
peircedc | ⊢ (DECID 𝜑 → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 776 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
2 | ax-1 5 | . . 3 ⊢ (𝜑 → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) | |
3 | pm2.21 579 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
4 | 3 | imim1i 59 | . . . 4 ⊢ (((𝜑 → 𝜓) → 𝜑) → (¬ 𝜑 → 𝜑)) |
5 | 4 | com12 30 | . . 3 ⊢ (¬ 𝜑 → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) |
6 | 2, 5 | jaoi 668 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) |
7 | 1, 6 | sylbi 119 | 1 ⊢ (DECID 𝜑 → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 661 DECID wdc 775 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in2 577 ax-io 662 |
This theorem depends on definitions: df-bi 115 df-dc 776 |
This theorem is referenced by: looinvdc 854 exmoeudc 2004 |
Copyright terms: Public domain | W3C validator |