| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.61ddc | GIF version | ||
| Description: Deduction eliminating a decidable antecedent. (Contributed by Jim Kingdon, 4-May-2018.) |
| Ref | Expression |
|---|---|
| pm2.61ddc.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| pm2.61ddc.2 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| pm2.61ddc | ⊢ (DECID 𝜓 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 776 | . 2 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 2 | pm2.61ddc.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 2 | com12 30 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| 4 | pm2.61ddc.2 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 5 | 4 | com12 30 | . . 3 ⊢ (¬ 𝜓 → (𝜑 → 𝜒)) |
| 6 | 3, 5 | jaoi 668 | . 2 ⊢ ((𝜓 ∨ ¬ 𝜓) → (𝜑 → 𝜒)) |
| 7 | 1, 6 | sylbi 119 | 1 ⊢ (DECID 𝜓 → (𝜑 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 661 DECID wdc 775 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
| This theorem depends on definitions: df-bi 115 df-dc 776 |
| This theorem is referenced by: bijadc 809 |
| Copyright terms: Public domain | W3C validator |