| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.76 | GIF version | ||
| Description: Theorem *2.76 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm2.76 | ⊢ ((𝜑 ∨ (𝜓 → 𝜒)) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 665 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜒)) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) |
| 3 | orim2 735 | . 2 ⊢ ((𝜓 → 𝜒) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) | |
| 4 | 2, 3 | jaoi 668 | 1 ⊢ ((𝜑 ∨ (𝜓 → 𝜒)) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 661 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: pm2.75 755 pm2.81 757 orimdidc 845 equs5or 1751 |
| Copyright terms: Public domain | W3C validator |