| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm3.13dc | GIF version | ||
| Description: Theorem *3.13 of [WhiteheadRussell] p. 111, but for decidable propositions. The converse, pm3.14 702, holds for all propositions. (Contributed by Jim Kingdon, 22-Apr-2018.) |
| Ref | Expression |
|---|---|
| pm3.13dc | ⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcn 779 | . . 3 ⊢ (DECID 𝜑 → DECID ¬ 𝜑) | |
| 2 | dcn 779 | . . 3 ⊢ (DECID 𝜓 → DECID ¬ 𝜓) | |
| 3 | dcor 876 | . . 3 ⊢ (DECID ¬ 𝜑 → (DECID ¬ 𝜓 → DECID (¬ 𝜑 ∨ ¬ 𝜓))) | |
| 4 | 1, 2, 3 | syl2im 38 | . 2 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (¬ 𝜑 ∨ ¬ 𝜓))) |
| 5 | pm3.11dc 898 | . 2 ⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑 ∧ 𝜓)))) | |
| 6 | con1dc 786 | . 2 ⊢ (DECID (¬ 𝜑 ∨ ¬ 𝜓) → ((¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑 ∧ 𝜓)) → (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓)))) | |
| 7 | 4, 5, 6 | syl6c 65 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓)))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∨ wo 661 DECID wdc 775 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 |
| This theorem depends on definitions: df-bi 115 df-dc 776 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |