| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm3.2an3 | GIF version | ||
| Description: pm3.2 137 for a triple conjunction. (Contributed by Alan Sare, 24-Oct-2011.) |
| Ref | Expression |
|---|---|
| pm3.2an3 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 ∧ 𝜓 ∧ 𝜒)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2 137 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → ((𝜑 ∧ 𝜓) ∧ 𝜒))) | |
| 2 | 1 | ex 113 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → ((𝜑 ∧ 𝜓) ∧ 𝜒)))) |
| 3 | df-3an 921 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 4 | 3 | bicomi 130 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
| 5 | 2, 4 | syl8ib 164 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 ∧ 𝜓 ∧ 𝜒)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 919 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 df-3an 921 |
| This theorem is referenced by: 3exp 1137 |
| Copyright terms: Public domain | W3C validator |