| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm3.34 | GIF version | ||
| Description: Theorem *3.34 (Syll) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm3.34 | ⊢ (((𝜓 → 𝜒) ∧ (𝜑 → 𝜓)) → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim2 54 | . 2 ⊢ ((𝜓 → 𝜒) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
| 2 | 1 | imp 122 | 1 ⊢ (((𝜓 → 𝜒) ∧ (𝜑 → 𝜓)) → (𝜑 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 |
| This theorem is referenced by: algcvgblem 10431 |
| Copyright terms: Public domain | W3C validator |