| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.39 | GIF version | ||
| Description: Theorem *4.39 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm4.39 | ⊢ (((𝜑 ↔ 𝜒) ∧ (𝜓 ↔ 𝜃)) → ((𝜑 ∨ 𝜓) ↔ (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 107 | . 2 ⊢ (((𝜑 ↔ 𝜒) ∧ (𝜓 ↔ 𝜃)) → (𝜑 ↔ 𝜒)) | |
| 2 | simpr 108 | . 2 ⊢ (((𝜑 ↔ 𝜒) ∧ (𝜓 ↔ 𝜃)) → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | orbi12d 739 | 1 ⊢ (((𝜑 ↔ 𝜒) ∧ (𝜓 ↔ 𝜃)) → ((𝜑 ∨ 𝜓) ↔ (𝜒 ∨ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 661 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |