ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.39 GIF version

Theorem pm4.39 768
Description: Theorem *4.39 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.39 (((𝜑𝜒) ∧ (𝜓𝜃)) → ((𝜑𝜓) ↔ (𝜒𝜃)))

Proof of Theorem pm4.39
StepHypRef Expression
1 simpl 107 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → (𝜑𝜒))
2 simpr 108 . 2 (((𝜑𝜒) ∧ (𝜓𝜃)) → (𝜓𝜃))
31, 2orbi12d 739 1 (((𝜑𝜒) ∧ (𝜓𝜃)) → ((𝜑𝜓) ↔ (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662
This theorem depends on definitions:  df-bi 115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator