Proof of Theorem pm4.55dc
| Step | Hyp | Ref
| Expression |
| 1 | | pm4.54dc 838 |
. . . . 5
⊢
(DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))) |
| 2 | 1 | imp 122 |
. . . 4
⊢
((DECID 𝜑 ∧ DECID 𝜓) → ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))) |
| 3 | | dcn 779 |
. . . . . . . . 9
⊢
(DECID 𝜓 → DECID ¬ 𝜓) |
| 4 | 3 | anim2i 334 |
. . . . . . . 8
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (DECID 𝜑 ∧ DECID ¬
𝜓)) |
| 5 | | dcor 876 |
. . . . . . . . 9
⊢
(DECID 𝜑 → (DECID ¬ 𝜓 → DECID
(𝜑 ∨ ¬ 𝜓))) |
| 6 | 5 | imp 122 |
. . . . . . . 8
⊢
((DECID 𝜑 ∧ DECID ¬ 𝜓) → DECID
(𝜑 ∨ ¬ 𝜓)) |
| 7 | 4, 6 | syl 14 |
. . . . . . 7
⊢
((DECID 𝜑 ∧ DECID 𝜓) → DECID (𝜑 ∨ ¬ 𝜓)) |
| 8 | | dcn 779 |
. . . . . . . . 9
⊢
(DECID 𝜑 → DECID ¬ 𝜑) |
| 9 | | dcan 875 |
. . . . . . . . 9
⊢
(DECID ¬ 𝜑 → (DECID 𝜓 → DECID
(¬ 𝜑 ∧ 𝜓))) |
| 10 | 8, 9 | syl 14 |
. . . . . . . 8
⊢
(DECID 𝜑 → (DECID 𝜓 → DECID
(¬ 𝜑 ∧ 𝜓))) |
| 11 | 10 | imp 122 |
. . . . . . 7
⊢
((DECID 𝜑 ∧ DECID 𝜓) → DECID (¬ 𝜑 ∧ 𝜓)) |
| 12 | 7, 11 | jca 300 |
. . . . . 6
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (DECID (𝜑 ∨ ¬ 𝜓) ∧ DECID (¬ 𝜑 ∧ 𝜓))) |
| 13 | | con2bidc 802 |
. . . . . . 7
⊢
(DECID (𝜑 ∨ ¬ 𝜓) → (DECID (¬ 𝜑 ∧ 𝜓) → (((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ 𝜓)) ↔ ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))))) |
| 14 | 13 | imp 122 |
. . . . . 6
⊢
((DECID (𝜑 ∨ ¬ 𝜓) ∧ DECID (¬ 𝜑 ∧ 𝜓)) → (((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ 𝜓)) ↔ ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))) |
| 15 | 12, 14 | syl 14 |
. . . . 5
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ 𝜓)) ↔ ((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))) |
| 16 | 15 | biimprd 156 |
. . . 4
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (((¬ 𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)) → ((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ 𝜓)))) |
| 17 | 2, 16 | mpd 13 |
. . 3
⊢
((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ∨ ¬ 𝜓) ↔ ¬ (¬ 𝜑 ∧ 𝜓))) |
| 18 | 17 | bicomd 139 |
. 2
⊢
((DECID 𝜑 ∧ DECID 𝜓) → (¬ (¬ 𝜑 ∧ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓))) |
| 19 | 18 | ex 113 |
1
⊢
(DECID 𝜑 → (DECID 𝜓 → (¬ (¬ 𝜑 ∧ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))) |