| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32 | GIF version | ||
| Description: Distribution of implication over biconditional. Theorem *5.32 of [WhiteheadRussell] p. 125. (Contributed by NM, 1-Aug-1994.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.32 | ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) → (𝜑 → (𝜓 ↔ 𝜒))) | |
| 2 | 1 | pm5.32d 437 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) → ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) |
| 3 | ibar 295 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 4 | ibar 295 | . . . 4 ⊢ (𝜑 → (𝜒 ↔ (𝜑 ∧ 𝜒))) | |
| 5 | 3, 4 | bibi12d 233 | . . 3 ⊢ (𝜑 → ((𝜓 ↔ 𝜒) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)))) |
| 6 | 5 | biimprcd 158 | . 2 ⊢ (((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) → (𝜑 → (𝜓 ↔ 𝜒))) |
| 7 | 2, 6 | impbii 124 | 1 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: pm5.32i 441 xordidc 1330 cbvex2 1838 rabbi 2531 rabxfrd 4219 asymref 4730 rexrnmpt 5331 mpt22eqb 5630 |
| Copyright terms: Public domain | W3C validator |