| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.501 | GIF version | ||
| Description: Theorem *5.501 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 24-Jan-2013.) |
| Ref | Expression |
|---|---|
| pm5.501 | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ↔ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.1im 171 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ↔ 𝜓))) | |
| 2 | bi1 116 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 3 | 2 | com12 30 | . 2 ⊢ (𝜑 → ((𝜑 ↔ 𝜓) → 𝜓)) |
| 4 | 1, 3 | impbid 127 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ↔ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: ibib 243 ibibr 244 pm5.1 565 pm5.18dc 810 biassdc 1326 |
| Copyright terms: Public domain | W3C validator |