![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralimi2 | GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004.) |
Ref | Expression |
---|---|
ralimi2.1 | ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
ralimi2 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimi2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐵 → 𝜓)) | |
2 | 1 | alimi 1384 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) |
3 | df-ral 2353 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
4 | df-ral 2353 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) | |
5 | 2, 3, 4 | 3imtr4i 199 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1282 ∈ wcel 1433 ∀wral 2348 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 |
This theorem depends on definitions: df-bi 115 df-ral 2353 |
This theorem is referenced by: ralimia 2424 ralcom3 2521 bj-nntrans 10746 bj-findis 10774 |
Copyright terms: Public domain | W3C validator |