| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimiaa | GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| ralimiaa.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| ralimiaa | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimiaa.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 113 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | ralimia 2424 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1433 ∀wral 2348 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 |
| This theorem depends on definitions: df-bi 115 df-ral 2353 |
| This theorem is referenced by: ralrnmpt 5330 rexrnmpt 5331 acexmidlem2 5529 |
| Copyright terms: Public domain | W3C validator |