| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sb1 | GIF version | ||
| Description: One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sb1 | ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 1686 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
| 2 | 1 | simprbi 269 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∃wex 1421 [wsb 1685 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 |
| This theorem is referenced by: sbh 1699 sbiedh 1710 sb4a 1722 sb4e 1726 sbcof2 1731 sb4 1753 sb4or 1754 spsbe 1763 sbidm 1772 sb5rf 1773 bj-sbimedh 10582 |
| Copyright terms: Public domain | W3C validator |