![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp11 | GIF version |
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
simp11 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 938 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
2 | 1 | 3ad2ant1 959 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 919 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-3an 921 |
This theorem is referenced by: simpl11 1013 simpr11 1022 simp111 1067 simp211 1076 simp311 1085 |
Copyright terms: Public domain | W3C validator |