| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbi2comg | GIF version | ||
| Description: Implication form of simplbi2com 1373. (Contributed by Alan Sare, 22-Jul-2012.) |
| Ref | Expression |
|---|---|
| simplbi2comg | ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2 128 | . 2 ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → ((𝜓 ∧ 𝜒) → 𝜑)) | |
| 2 | 1 | expcomd 1370 | 1 ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓 → 𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |