| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > smodm | GIF version | ||
| Description: The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.) |
| Ref | Expression |
|---|---|
| smodm | ⊢ (Smo 𝐴 → Ord dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-smo 5924 | . 2 ⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) | |
| 2 | 1 | simp2bi 954 | 1 ⊢ (Smo 𝐴 → Ord dom 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 1433 ∀wral 2348 Ord word 4117 Oncon0 4118 dom cdm 4363 ⟶wf 4918 ‘cfv 4922 Smo wsmo 5923 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-smo 5924 |
| This theorem is referenced by: smores2 5932 smodm2 5933 smoel 5938 |
| Copyright terms: Public domain | W3C validator |