| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3anr2 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 1-Aug-2007.) |
| Ref | Expression |
|---|---|
| syl3anr2.1 | ⊢ (𝜑 → 𝜃) |
| syl3anr2.2 | ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) |
| Ref | Expression |
|---|---|
| syl3anr2 | ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜑 ∧ 𝜏)) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anr2.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | syl3anr2.2 | . . . 4 ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) | |
| 3 | 2 | ancoms 264 | . . 3 ⊢ (((𝜓 ∧ 𝜃 ∧ 𝜏) ∧ 𝜒) → 𝜂) |
| 4 | 1, 3 | syl3anl2 1218 | . 2 ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜂) |
| 5 | 4 | ancoms 264 | 1 ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜑 ∧ 𝜏)) → 𝜂) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 919 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 df-3an 921 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |