| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylancb | GIF version | ||
| Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004.) |
| Ref | Expression |
|---|---|
| sylancb.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylancb.2 | ⊢ (𝜑 ↔ 𝜒) |
| sylancb.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylancb | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylancb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | sylancb.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 3 | sylancb.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 1, 2, 3 | syl2anb 285 | . 2 ⊢ ((𝜑 ∧ 𝜑) → 𝜃) |
| 5 | 4 | anidms 389 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |