![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylbb2 | GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
sylbb2.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb2.2 | ⊢ (𝜒 ↔ 𝜓) |
Ref | Expression |
---|---|
sylbb2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb2.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | sylbb2.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 2 | biimpri 131 | . 2 ⊢ (𝜓 → 𝜒) |
4 | 1, 3 | sylbi 119 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |