| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syld3an1 | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| syld3an1.1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) |
| syld3an1.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syld3an1 | ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syld3an1.1 | . . . 4 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) | |
| 2 | 1 | 3com13 1143 | . . 3 ⊢ ((𝜃 ∧ 𝜓 ∧ 𝜒) → 𝜑) |
| 3 | syld3an1.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | 3 | 3com13 1143 | . . 3 ⊢ ((𝜃 ∧ 𝜓 ∧ 𝜑) → 𝜏) |
| 5 | 2, 4 | syld3an3 1214 | . 2 ⊢ ((𝜃 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| 6 | 5 | 3com13 1143 | 1 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 919 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 df-3an 921 |
| This theorem is referenced by: npncan 7329 nnpcan 7331 ppncan 7350 muldivdirap 7795 div2negap 7823 ltmuldiv 7952 mulqmod0 9332 |
| Copyright terms: Public domain | W3C validator |