ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  truorfal GIF version

Theorem truorfal 1337
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
truorfal ((⊤ ∨ ⊥) ↔ ⊤)

Proof of Theorem truorfal
StepHypRef Expression
1 tru 1288 . . 3
21orci 682 . 2 (⊤ ∨ ⊥)
32bitru 1296 1 ((⊤ ∨ ⊥) ↔ ⊤)
Colors of variables: wff set class
Syntax hints:  wb 103  wo 661  wtru 1285  wfal 1289
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662
This theorem depends on definitions:  df-bi 115  df-tru 1287
This theorem is referenced by:  truxorfal  1351
  Copyright terms: Public domain W3C validator