| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xorbi12i | GIF version | ||
| Description: Equality property for XOR. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| xorbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
| xorbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| xorbi12i | ⊢ ((𝜑 ⊻ 𝜒) ↔ (𝜓 ⊻ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xorbi12.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | xorbi12.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → (𝜒 ↔ 𝜃)) |
| 5 | 2, 4 | xorbi12d 1313 | . 2 ⊢ (⊤ → ((𝜑 ⊻ 𝜒) ↔ (𝜓 ⊻ 𝜃))) |
| 6 | 5 | trud 1293 | 1 ⊢ ((𝜑 ⊻ 𝜒) ↔ (𝜓 ⊻ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 ⊤wtru 1285 ⊻ wxo 1306 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-xor 1307 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |