| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anim2i | Structured version Visualization version Unicode version | ||
| Description: Add two conjuncts to antecedent and consequent. (Contributed by AV, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3animi.1 |
|
| Ref | Expression |
|---|---|
| 3anim2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 |
. 2
| |
| 2 | 3animi.1 |
. 2
| |
| 3 | id 22 |
. 2
| |
| 4 | 1, 2, 3 | 3anim123i 1247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: elfzo0z 12509 mdetunilem9 20426 chpdmat 20646 subgrprop2 26166 welb 33531 lincreslvec3 42271 |
| Copyright terms: Public domain | W3C validator |