![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ecase | Structured version Visualization version Unicode version |
Description: Inference for elimination by cases. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
3ecase.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3ecase.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3ecase.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3ecase.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3ecase |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ecase.4 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3exp 1264 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 3ecase.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | 2a1d 26 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | pm2.61i 176 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3ecase.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 3ecase.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 5, 6, 7 | pm2.61nii 178 |
1
![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |