| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3jaodd | Structured version Visualization version Unicode version | ||
| Description: Double deduction form of 3jaoi 1391. (Contributed by Scott Fenton, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| 3jaodd.1 |
|
| 3jaodd.2 |
|
| 3jaodd.3 |
|
| Ref | Expression |
|---|---|
| 3jaodd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaodd.1 |
. . . 4
| |
| 2 | 1 | com3r 87 |
. . 3
|
| 3 | 3jaodd.2 |
. . . 4
| |
| 4 | 3 | com3r 87 |
. . 3
|
| 5 | 3jaodd.3 |
. . . 4
| |
| 6 | 5 | com3r 87 |
. . 3
|
| 7 | 2, 4, 6 | 3jaoi 1391 |
. 2
|
| 8 | 7 | com3l 89 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |