Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  an2anr Structured version   Visualization version   Unicode version

Theorem an2anr 33998
Description: Double commutation in conjunction. (Contributed by Peter Mazsa, 27-Jun-2019.)
Assertion
Ref Expression
an2anr  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  <->  ( ( ps  /\  ph )  /\  ( th  /\  ch )
) )

Proof of Theorem an2anr
StepHypRef Expression
1 ancom 466 . 2  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
2 ancom 466 . 2  |-  ( ( ch  /\  th )  <->  ( th  /\  ch )
)
31, 2anbi12i 733 1  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  <->  ( ( ps  /\  ph )  /\  ( th  /\  ch )
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator