![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-pow | Structured version Visualization version Unicode version |
Description: Axiom of Power Sets. An
axiom of Zermelo-Fraenkel set theory. It
states that a set ![]() ![]() ![]() |
Ref | Expression |
---|---|
ax-pow |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vw |
. . . . . . 7
![]() ![]() | |
2 | vz |
. . . . . . 7
![]() ![]() | |
3 | 1, 2 | wel 1991 |
. . . . . 6
![]() ![]() ![]() ![]() |
4 | vx |
. . . . . . 7
![]() ![]() | |
5 | 1, 4 | wel 1991 |
. . . . . 6
![]() ![]() ![]() ![]() |
6 | 3, 5 | wi 4 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6, 1 | wal 1481 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | vy |
. . . . 5
![]() ![]() | |
9 | 2, 8 | wel 1991 |
. . . 4
![]() ![]() ![]() ![]() |
10 | 7, 9 | wi 4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10, 2 | wal 1481 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 11, 8 | wex 1704 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This axiom is referenced by: zfpow 4844 axpow2 4845 bj-zfpow 32795 |
Copyright terms: Public domain | W3C validator |