| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-pow | Structured version Visualization version Unicode version | ||
| Description: Axiom of Power Sets. An
axiom of Zermelo-Fraenkel set theory. It
states that a set |
| Ref | Expression |
|---|---|
| ax-pow |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vw |
. . . . . . 7
| |
| 2 | vz |
. . . . . . 7
| |
| 3 | 1, 2 | wel 1991 |
. . . . . 6
|
| 4 | vx |
. . . . . . 7
| |
| 5 | 1, 4 | wel 1991 |
. . . . . 6
|
| 6 | 3, 5 | wi 4 |
. . . . 5
|
| 7 | 6, 1 | wal 1481 |
. . . 4
|
| 8 | vy |
. . . . 5
| |
| 9 | 2, 8 | wel 1991 |
. . . 4
|
| 10 | 7, 9 | wi 4 |
. . 3
|
| 11 | 10, 2 | wal 1481 |
. 2
|
| 12 | 11, 8 | wex 1704 |
1
|
| Colors of variables: wff setvar class |
| This axiom is referenced by: zfpow 4844 axpow2 4845 bj-zfpow 32795 |
| Copyright terms: Public domain | W3C validator |