MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5ea Structured version   Visualization version   Unicode version

Theorem ax5ea 1842
Description: If a formula holds for some value of a variable not occurring in it, then it holds for all values of that variable. (Contributed by BJ, 28-Dec-2020.)
Assertion
Ref Expression
ax5ea  |-  ( E. x ph  ->  A. x ph )
Distinct variable group:    ph, x

Proof of Theorem ax5ea
StepHypRef Expression
1 ax5e 1841 . 2  |-  ( E. x ph  ->  ph )
2 ax-5 1839 . 2  |-  ( ph  ->  A. x ph )
31, 2syl 17 1  |-  ( E. x ph  ->  A. x ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-5 1839
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by:  nfv  1843
  Copyright terms: Public domain W3C validator