Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-babygodel Structured version   Visualization version   Unicode version

Theorem bj-babygodel 32588
Description: See the section header comments for the context.

The first hypothesis reads " ph is true if and only if it is not provable in T" (and having this first hypothesis means that we can prove this fact in T). The wff  ph is a formal version of the sentence "This sentence is not provable". The hard part of the proof of Gödel's theorem is to construct such a  ph, called a "Gödel–Rosser sentence", for a first-order theory T which is effectively axiomatizable and contains Robinson arithmetic, through Gödel diagonalization (this can be done in primitive recursive arithmetic). The second hypothesis means that F. is not provable in T, that is, that the theory T is consistent (and having this second hypothesis means that we can prove in T that the theory T is consistent). The conclusion is the falsity, so having the conclusion means that T can prove the falsity, that is, T is inconsistent.

Therefore, taking the contrapositive, this theorem expresses that if a first-order theory is consistent (and one can prove in it that some formula is true if and only if it is not provable in it), then this theory does not prove its own consistency.

This proof is due to George Boolos, Gödel's Second Incompleteness Theorem Explained in Words of One Syllable, Mind, New Series, Vol. 103, No. 409 (January 1994), pp. 1--3.

(Contributed by BJ, 3-Apr-2019.)

Hypotheses
Ref Expression
bj-babygodel.s  |-  ( ph  <->  -. Prv  ph )
bj-babygodel.1  |-  -. Prv F.
Assertion
Ref Expression
bj-babygodel  |- F.

Proof of Theorem bj-babygodel
StepHypRef Expression
1 bj-babygodel.1 . . 3  |-  -. Prv F.
21ax-prv1 32583 . 2  |- Prv  -. Prv F.
3 bj-babygodel.s . . . . . . . . . 10  |-  ( ph  <->  -. Prv  ph )
43biimpi 206 . . . . . . . . 9  |-  ( ph  ->  -. Prv  ph )
54prvlem1 32586 . . . . . . . 8  |-  (Prv  ph  -> Prv 
-. Prv  ph )
6 ax-prv3 32585 . . . . . . . 8  |-  (Prv  ph  -> Prv Prv  ph )
7 pm2.21 120 . . . . . . . . 9  |-  ( -. Prv  ph  ->  (Prv  ph  -> F.  ) )
87prvlem2 32587 . . . . . . . 8  |-  (Prv  -. Prv  ph 
->  (Prv Prv  ph  -> Prv F.  ) )
95, 6, 8sylc 65 . . . . . . 7  |-  (Prv  ph  -> Prv F.  )
109con3i 150 . . . . . 6  |-  ( -. Prv F.  ->  -. Prv  ph )
1110, 3sylibr 224 . . . . 5  |-  ( -. Prv F.  ->  ph )
1211prvlem1 32586 . . . 4  |-  (Prv  -. Prv F. 
-> Prv  ph )
1312, 9syl 17 . . 3  |-  (Prv  -. Prv F. 
-> Prv F.  )
141, 13mto 188 . 2  |-  -. Prv  -. Prv F.
152, 14pm2.24ii 117 1  |- F.
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196   F. wfal 1488  Prv cprvb 32582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-prv1 32583  ax-prv2 32584  ax-prv3 32585
This theorem depends on definitions:  df-bi 197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator