MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cadbi123i Structured version   Visualization version   Unicode version

Theorem cadbi123i 1550
Description: Equality theorem for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
Hypotheses
Ref Expression
cadbii.1  |-  ( ph  <->  ps )
cadbii.2  |-  ( ch  <->  th )
cadbii.3  |-  ( ta  <->  et )
Assertion
Ref Expression
cadbi123i  |-  (cadd (
ph ,  ch ,  ta )  <-> cadd ( ps ,  th ,  et ) )

Proof of Theorem cadbi123i
StepHypRef Expression
1 cadbii.1 . . . 4  |-  ( ph  <->  ps )
21a1i 11 . . 3  |-  ( T. 
->  ( ph  <->  ps )
)
3 cadbii.2 . . . 4  |-  ( ch  <->  th )
43a1i 11 . . 3  |-  ( T. 
->  ( ch  <->  th )
)
5 cadbii.3 . . . 4  |-  ( ta  <->  et )
65a1i 11 . . 3  |-  ( T. 
->  ( ta  <->  et )
)
72, 4, 6cadbi123d 1549 . 2  |-  ( T. 
->  (cadd ( ph ,  ch ,  ta )  <-> cadd ( ps ,  th ,  et ) ) )
87trud 1493 1  |-  (cadd (
ph ,  ch ,  ta )  <-> cadd ( ps ,  th ,  et ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196   T. wtru 1484  caddwcad 1545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-xor 1465  df-tru 1486  df-cad 1546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator