![]() |
Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > confun | Structured version Visualization version Unicode version |
Description: Given the hypotheses there exists a proof for (c implies ( d iff a ) ). (Contributed by Jarvin Udandy, 6-Sep-2020.) |
Ref | Expression |
---|---|
confun.1 |
![]() ![]() |
confun.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
confun.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
confun.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
confun |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | confun.3 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | a1i 11 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | impbid 202 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | confun.2 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | confun.1 |
. . . . . . 7
![]() ![]() | |
7 | confun.4 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | ax-mp 5 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
9 | ax-1 6 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 6, 9 | ax-mp 5 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8, 10 | impbii 199 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
12 | 5, 11 | sylibr 224 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12 | a1i 11 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | ax-1 6 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | 13, 14 | impbid 202 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 4, 15 | bitrd 268 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: confun2 41107 confun3 41108 |
Copyright terms: Public domain | W3C validator |