MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedlema Structured version   Visualization version   Unicode version

Theorem dedlema 1002
Description: Lemma for weak deduction theorem. See also ifptru 1023. (Contributed by NM, 26-Jun-2002.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Assertion
Ref Expression
dedlema  |-  ( ph  ->  ( ps  <->  ( ( ps  /\  ph )  \/  ( ch  /\  -.  ph ) ) ) )

Proof of Theorem dedlema
StepHypRef Expression
1 orc 400 . . 3  |-  ( ( ps  /\  ph )  ->  ( ( ps  /\  ph )  \/  ( ch 
/\  -.  ph ) ) )
21expcom 451 . 2  |-  ( ph  ->  ( ps  ->  (
( ps  /\  ph )  \/  ( ch  /\ 
-.  ph ) ) ) )
3 simpl 473 . . . 4  |-  ( ( ps  /\  ph )  ->  ps )
43a1i 11 . . 3  |-  ( ph  ->  ( ( ps  /\  ph )  ->  ps )
)
5 pm2.24 121 . . . 4  |-  ( ph  ->  ( -.  ph  ->  ps ) )
65adantld 483 . . 3  |-  ( ph  ->  ( ( ch  /\  -.  ph )  ->  ps ) )
74, 6jaod 395 . 2  |-  ( ph  ->  ( ( ( ps 
/\  ph )  \/  ( ch  /\  -.  ph )
)  ->  ps )
)
82, 7impbid 202 1  |-  ( ph  ->  ( ps  <->  ( ( ps  /\  ph )  \/  ( ch  /\  -.  ph ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386
This theorem is referenced by:  pm4.42  1004  elimhOLD  1033  dedtOLD  1034
  Copyright terms: Public domain W3C validator