| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-abs | Structured version Visualization version Unicode version | ||
| Description: Define the function for
the absolute value (modulus) of a complex
number. See abscli 14134 for its closure and absval 13978 or absval2i 14136 for its
value. For example, |
| Ref | Expression |
|---|---|
| df-abs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cabs 13974 |
. 2
| |
| 2 | vx |
. . 3
| |
| 3 | cc 9934 |
. . 3
| |
| 4 | 2 | cv 1482 |
. . . . 5
|
| 5 | ccj 13836 |
. . . . . 6
| |
| 6 | 4, 5 | cfv 5888 |
. . . . 5
|
| 7 | cmul 9941 |
. . . . 5
| |
| 8 | 4, 6, 7 | co 6650 |
. . . 4
|
| 9 | csqrt 13973 |
. . . 4
| |
| 10 | 8, 9 | cfv 5888 |
. . 3
|
| 11 | 2, 3, 10 | cmpt 4729 |
. 2
|
| 12 | 1, 11 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: absval 13978 absf 14077 absfico 39410 |
| Copyright terms: Public domain | W3C validator |