MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-abs Structured version   Visualization version   Unicode version

Definition df-abs 13976
Description: Define the function for the absolute value (modulus) of a complex number. See abscli 14134 for its closure and absval 13978 or absval2i 14136 for its value. For example,  ( abs `  -u 2
)  =  2 (ex-abs 27312). (Contributed by NM, 27-Jul-1999.)
Assertion
Ref Expression
df-abs  |-  abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  ( * `  x ) ) ) )

Detailed syntax breakdown of Definition df-abs
StepHypRef Expression
1 cabs 13974 . 2  class  abs
2 vx . . 3  setvar  x
3 cc 9934 . . 3  class  CC
42cv 1482 . . . . 5  class  x
5 ccj 13836 . . . . . 6  class  *
64, 5cfv 5888 . . . . 5  class  ( * `
 x )
7 cmul 9941 . . . . 5  class  x.
84, 6, 7co 6650 . . . 4  class  ( x  x.  ( * `  x ) )
9 csqrt 13973 . . . 4  class  sqr
108, 9cfv 5888 . . 3  class  ( sqr `  ( x  x.  (
* `  x )
) )
112, 3, 10cmpt 4729 . 2  class  ( x  e.  CC  |->  ( sqr `  ( x  x.  (
* `  x )
) ) )
121, 11wceq 1483 1  wff  abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  ( * `  x ) ) ) )
Colors of variables: wff setvar class
This definition is referenced by:  absval  13978  absf  14077  absfico  39410
  Copyright terms: Public domain W3C validator