![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-bn | Structured version Visualization version Unicode version |
Description: Define the class of all Banach spaces. A Banach space is a normed vector space such that both the vector space and the scalar field are complete under their respective norm-induced metrics. (Contributed by NM, 5-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
df-bn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbn 23130 |
. 2
![]() | |
2 | vw |
. . . . . 6
![]() ![]() | |
3 | 2 | cv 1482 |
. . . . 5
![]() ![]() |
4 | csca 15944 |
. . . . 5
![]() | |
5 | 3, 4 | cfv 5888 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
6 | ccms 23129 |
. . . 4
![]() | |
7 | 5, 6 | wcel 1990 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
8 | cnvc 22386 |
. . . 4
![]() | |
9 | 8, 6 | cin 3573 |
. . 3
![]() ![]() ![]() ![]() |
10 | 7, 2, 9 | crab 2916 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 1, 10 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: isbn 23135 |
Copyright terms: Public domain | W3C validator |