![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-chsup | Structured version Visualization version Unicode version |
Description: Define the supremum of a
set of Hilbert lattice elements. See chsupval2 28269
for its value. We actually define the supremum for an arbitrary
collection of Hilbert space subsets, not just elements of the Hilbert
lattice ![]() |
Ref | Expression |
---|---|
df-chsup |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsup 27791 |
. 2
![]() ![]() | |
2 | vx |
. . 3
![]() ![]() | |
3 | chil 27776 |
. . . . 5
![]() ![]() | |
4 | 3 | cpw 4158 |
. . . 4
![]() ![]() ![]() |
5 | 4 | cpw 4158 |
. . 3
![]() ![]() ![]() ![]() |
6 | 2 | cv 1482 |
. . . . . 6
![]() ![]() |
7 | 6 | cuni 4436 |
. . . . 5
![]() ![]() ![]() |
8 | cort 27787 |
. . . . 5
![]() ![]() | |
9 | 7, 8 | cfv 5888 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9, 8 | cfv 5888 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 2, 5, 10 | cmpt 4729 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 1, 11 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: hsupval 28193 |
Copyright terms: Public domain | W3C validator |