MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cic Structured version   Visualization version   Unicode version

Definition df-cic 16456
Description: Function returning the set of isomorphic objects for each category  c. Definition 3.15 of [Adamek] p. 29. Analogous to the definition of the group isomorphism relation  ~=g𝑔, see df-gic 17702. (Contributed by AV, 4-Apr-2020.)
Assertion
Ref Expression
df-cic  |-  ~=c𝑐  =  (
c  e.  Cat  |->  ( (  Iso  `  c
) supp  (/) ) )

Detailed syntax breakdown of Definition df-cic
StepHypRef Expression
1 ccic 16455 . 2  class  ~=c𝑐
2 vc . . 3  setvar  c
3 ccat 16325 . . 3  class  Cat
42cv 1482 . . . . 5  class  c
5 ciso 16406 . . . . 5  class  Iso
64, 5cfv 5888 . . . 4  class  (  Iso  `  c )
7 c0 3915 . . . 4  class  (/)
8 csupp 7295 . . . 4  class supp
96, 7, 8co 6650 . . 3  class  ( (  Iso  `  c ) supp  (/) )
102, 3, 9cmpt 4729 . 2  class  ( c  e.  Cat  |->  ( (  Iso  `  c ) supp  (/) ) )
111, 10wceq 1483 1  wff  ~=c𝑐  =  (
c  e.  Cat  |->  ( (  Iso  `  c
) supp  (/) ) )
Colors of variables: wff setvar class
This definition is referenced by:  cicfval  16457
  Copyright terms: Public domain W3C validator