![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-clwlks | Structured version Visualization version Unicode version |
Description: Define the set of all
closed walks (in an undirected graph).
According to definition 4 in [Huneke] p. 2: "A walk of length n on (a graph) G is an ordered sequence v0 , v1 , ... v(n) of vertices such that v(i) and v(i+1) are neighbors (i.e are connected by an edge). We say the walk is closed if v(n) = v0". According to the definition of a walk as two mappings f from { 0 , ... , ( n - 1 ) } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices, a closed walk is represented by the following sequence: p(0) e(f(0)) p(1) e(f(1)) ... p(n-1) e(f(n-1)) p(n)=p(0). Notice that by this definition, a single vertex is a closed walk of length 0, see also 0clwlk 26991! (Contributed by Alexander van der Vekens, 12-Mar-2018.) (Revised by AV, 16-Feb-2021.) |
Ref | Expression |
---|---|
df-clwlks |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cclwlks 26666 |
. 2
![]() | |
2 | vg |
. . 3
![]() ![]() | |
3 | cvv 3200 |
. . 3
![]() ![]() | |
4 | vf |
. . . . . . 7
![]() ![]() | |
5 | 4 | cv 1482 |
. . . . . 6
![]() ![]() |
6 | vp |
. . . . . . 7
![]() ![]() | |
7 | 6 | cv 1482 |
. . . . . 6
![]() ![]() |
8 | 2 | cv 1482 |
. . . . . . 7
![]() ![]() |
9 | cwlks 26492 |
. . . . . . 7
![]() | |
10 | 8, 9 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
11 | 5, 7, 10 | wbr 4653 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | cc0 9936 |
. . . . . . 7
![]() ![]() | |
13 | 12, 7 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
14 | chash 13117 |
. . . . . . . 8
![]() ![]() | |
15 | 5, 14 | cfv 5888 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() |
16 | 15, 7 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 13, 16 | wceq 1483 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 11, 17 | wa 384 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 18, 4, 6 | copab 4712 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 2, 3, 19 | cmpt 4729 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 1, 20 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: clwlks 26668 |
Copyright terms: Public domain | W3C validator |